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Abstract 
 
The software development paradigm propounded by Semantic Designs, Inc. envisions a design-centric perspective rather 
than today’s all too prevalent code-centric viewpoint. The Design Maintenance vision mandates notions of design and 
designing that are both formal and practicable. Our notion of a formal design entails three interrelated parts: specification (the 
artifact’s functionality and performance goals); realization (including architectural design choices and ultimately, code); and 
rationale (justifying the realization of the specification). By practicable, we mean that each of the three parts of our formal 
notion of design are: 1) manipulable by both machine and software engineer; 2) scaleable for real, industrial-size systems 
(10’s of MSLOC); 3) able to accommodate systems that are realized using multiple domain specific languages (ranging from 
high-level specification languages to implementations comprised of multiple target-execution languages); and 4) capable of 
continuous, incremental enhancement and extension. 
The implementation of this vision is called the Design Maintenance System™ or DMS™.  The current release is DMS 1.0 
Reengineering Toolkit, which provides infrastructure for Domain Specific Language (DSL) engineering as well as language 
neutral components that enable construction of large-scale, mixed-language specification analysis, transformation and 
synthesis tools. Original research and development for DMS was funded by an award from the Department of Commerce, 
NIST ATP under the Component-Based Software Initiative (NIST Cooperative Agreement Number 70NANB5H1165). 
The Design Maintenance vision and DMS together form the basis for our full, frontal assault on software engineering’s 
challenging areas of “New Software Development Paradigms” and “Software for the Real World”. We claim the Design 
Maintenance vision and DMS together provide a solid foundation for building a formal, repeatable software engineering 
discipline and practice. In a DMS-based environment, hard won software engineering synthesis knowledge is made reusable 
through the incremental accretion of an ever-increasing repository of domain-specific transformations and domain-specific 
languages. Thus, software engineers reusing such knowledge become more effective in that the artifacts are produced using 
tested language definitions and transformations. Maintenance productivity will be enhanced as well, since the full-fledged 
implementation of DMS will support incremental, continuous design modification by capturing and preserving instances of 
the DMS notion of design—specifications, realizations, rationales. Moreover the leverage afforded by DMS in the 
identification and disposition of design changes on industrial scale designs promise to yield a 50% reduction in change cycle 
time while eliminating the software error re -injection rate—“collateral damage” or unintentional consequences of change 
installation.  However, critical technical barriers must be surmounted on the path to achieving these productivity and quality 
breakthroughs.  Some of these barriers include: scalable design capture capabilities; semantic reasoning across DSL 
boundaries; specification of and reasoning about performance-related aspects for a software artifact. 
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1 Design must be the Key Engineering Product 

Traditional software construction methods suffer from 
high development and maintenance costs as well as long 
delays.  The resulting products often have a large number 
of errors, and are difficult to adapt to change over their 
lifespan.  The fundamental cause of these problems is the 
loss of mechanically-processable design information about 
the software, from its specifications, to its architecture, 
algorithms and implementation, especially including 
rationale as to why the software is structured/implemented 
the way it is.   Without such design information, software 
engineers are doomed to waste considerable time re-
inventing poor approximations of the true design, and 
consequently organizations repeatedly pay high 
(re)engineering costs and compound implementation errors. 

Retaining design information by informal means such 
as documents or human-based system expertise does not 
allow fast or reliable transfer of that information to other 
engineering agents or automated tools.  The solution to this 
is to mechanically capture and store system design 
information as designers work.  To ensure that the design is 
accurate, the resulting system must be derived from the 
design, rather than informally coding from a design and 
later attempting to reconcile the as-implemented code with 
the proposed design.  Capturing such design information in 
a mechanically processable form enables automation to be 
used during design and implementation, bringing the 
productivity of computing to the software engineering 
process. 

Automated processing of design knowledge falls in two 
categories:  analysis of a design, to identify consequences, 
strengths and weaknesses, and semi-automated code 
generation, to provide accelerated means for reliable 
implementation.  Domain specific program transformation 
systems are a maturing technology that can provide a 
significant amount the necessary automation. 

Finally, the engineering process must be viewed as 
continuous product enhancement by incremental design 
maintenance.  Even “new” systems are designed and 
implemented incrementally over time.  This paper offers a 
vision of Design Maintenance, sketched originally in 
[2,3,5], and outlines DMS, a tool under construction, which 
is intended to lead, in the long term, to a realization of the 
vision. 

2 What is a Design? 
The idea of capturing “designs” is certainly not new, 

and a plethora of CASE methodologies and tools have been 
proposed, implemented and used in the past.  We contend 
that their payoff would have been much greater with a 
commitment to a precise definition of design.  The failing 
of many CASE tools is caused by commitment to 

extremely weak notions of design. 

The value of design information is in the set of 
questions it can potentially answer about the designed 
artifact.  We argue that a good definition of design must 
provide sufficient information to, in principle, answer all 
possible questions about the designed product, including 
What, How, and Why: 

• What is the specification for the software, both: 
o functionality and 
o performance (e.g., constraints concerning 

environment, capacity, responsiveness, 
etc.) 

• How the software is realized 
o “architectural” design choices 

o final code 

• Why the realization meets the specification 
Finally, such design information must be extensible thus 
admitting to answering new classes of questions as 
software engineering research and practice is able to 
formulate them. Each of the following subsections 
elaborates these components a design. 

2.1 Domain-oriented Specifications  
The first component of a design is the specification of 

the software constructed.  This answers the fundamental 
question of “What should the software do, and how well 
should it do it?”  Such specifications must be formal, so 
that there can be no question about intent.  They must also 
be complete; “specifications” which elide some desired 
behavior are not specifications, but merely projections of 
the intent.  One cannot implement a perspective. We insist 
that a good design representation be able to specify the 
required functionality and performance completely, without 
over committing, to leave maximal room for 
implementation choices. 

This opens the question of which single specific 
formalism should one choose for specification.  A standard 
response to this question from much of the formal methods 
community is some variation of a mathematically based 
system involving quantifiers, sets, and relations (such a Z), 
on the grounds that all computations can in principle be 
expressed in this way.  We hold that the question is 
malformed as it is predicated on the assumption that there 
can be a one-size-fits-all formalism. 

Instead, we suggest that a software system specification 
should use multiple, domain-specific languages (DSLs) 
appropriate to the task at hand.1  Using a DSL offers 
                                                                 
1 We observe that this idea already actually appears in the 
implementation of practically every software system of any 



  

  

 

brevity and clarity, by using the vocabulary of the problem 
domain.  The practical utility of individual DSLs is shown 
by their variety [10].  DSLs enable specifications to be 
more easily encoded and reviewed, minimizing errors in 
encoding requirements.  Since fixing requirements errors 
cost 10-100 times the cost of fixing coding errors, it makes 
sense to maximize the clarity of the actual system 
specification. 

Each DSL must have a formal meaning.  This is a 
necessity if there is to ever be any mechanical tool support, 
and if the “intuitive” meaning of the DSL, evident to the 
designer, is to make any sense.  That formality may itself 
be expressed in terms of underlying but more abstract 
DSLs, finally grounding in algebras, the lambda calculus, 
or models.  These underlying DSLs can provide the means 
for a mechanical system to reason about the user-level 
DSLs. 

Complex software systems must almost always handle 
complex situations, which is unlikely to be covered by a 
single DSL.  By using multiple DSLs, each appropriate to a 
particular aspect of the problem, one can express the 
overall functionality.  For example, one could express a 
problem involving the specification of discrete control for 
factory automation in terms of hierarchical, Colored Petri 
nets [8] propagating values whose arithmetic is defined by 
multiple algebras (e.g., Boolean, Integer, and Time). 

Use of multiple DSLs enables us to express the 
functionality with one set of DSLs, and the performance  
properties of the system using another set of DSLs.  This 
could enable us to express performance of algorithms using 
a DSL for computational complexity, and performance 
specifications for storage in terms of a temporal calculus 
describing an eventual steady state.  As other definitions of 
performance arise, appropriate DSLs can be designed for 
their specification.  Performance DSLs are useful when 
there is a partial ordering over performance expressions, as 
this allows the comparison and selection of “better” 
performing implementations [2]. 

Finally, use of multiple DSLs is robust in the face of the 
impossibility of having the all-encompassing wide-
spectrum language already designed in advance and 
suitable for every possible application.  We can always fall 
back on whichever (or even many) of the mathematical 
specification languages seems best, as just another DSL. 

A significant research challenge for this approach is the 
requirement to define the formal meaning of composite 
specifications coded in multiple DSLs.  It requires that 

                                                                                                            
scale.  Typical examples include COBOL plus SQL, C++ 
and IDL.  We see this at the specification level in UML 
with OCL, etc. 

composing DSLs mu st also have a formal meaning [9] 
(including formally defining certain compositions as 
nonsense). We hold that the expression and meaning of 
such compositions is itself a kind of DSL.  The 
mathematical machinery for defining relations and 
therefore, compositions between the formal meanings of 
problem domains is beginning to appear in research on 
semantics with one promising area of inquiry being 
institution morphisms [12]. 

2.2 Software Realization 
The second component of software design is its 

realization, both in the concrete (i.e., the “executable 
source code”) and in the abstract (how the software is 
mapped from specification into code).  This answers the 
question, “How is the software implemented to achieve 
correct functionality and satisfactory performance with 
respect to the specification?” 

Realizations are recursive decompositions of subsets of 
the functionality specification, in terms of lower-level 
specifications and functionality, usually in mixed target 
execution languages —“DSLs” such as C++, Prolog, 
HTML and Verilog.  Consider again the example for 
factory automation.  Places in the Colored Petri Net 
specification are realized by abstract sets of algebraic 
values, which in turn are realized by C++ arrays of structs 
representing individual values.  Transitions in the Colored 
Petri Net are realized by predicate-triggered atomic 
transactions inspecting transition input states, and updating 
output states; the atomic transactions are realized in turn by 
state-update-calls to interrupt-disabled C++ code to move 
values from input place arrays to output place arrays, 
performing combinational arithmetic along the way. 

The actual realization of a specification fragment in 
terms of lower level constructs is a design choice.  This 
design choice would be recorded explicitly in the design.  
Such a record is fundamental to enable subsequent 
incremental design modification. As well it provides bi-
directional traceability between the motivating 
specification fragment and its realization.  This traceability 
will also allow later revalidating the design choice as 
legitimate if necessary, by informal inspection by other 
software engineers, or by automated proof based on the 
semantics of the specification fragments being realized, and 
the realizing implementation fragments.  We remark that 
other design choices are typically possible and latent in the 
specification.  The potential for other design choices 
enables redesign of the software during later maintenance. 

The realization may be as complete as the stage of the 
implementation permits, from empty (no design work has 
been done) to fully realized as source code.  Realization 
parts may be more or less complete than other parts.  This 



  

  

 

allows an engineer to operate on any part of the design, 
either to extend it in detail towards an implementation, or 
to retract implementation steps, abstracting a portion of the 
software to be re-implemented with another technology [1].  
Of course, a completed design has “code” components at 
all “leaves”, and may thus be compiled to an executable 
system. 

The part of the realization closer to the specification, 
that shows how the code is structured at a high level, would 
be generally termed architecture of the code.  We view 
architecture as more fluid than others might; it is necessary 
to explain the structure of the code, but is itself just a 
consequence of higher-level design decisions that chose 
that architecture rather than some other2. 

2.3 Rationale for Realization 

The third fundamental component of a design is the 
rationale justifying each design decision.  The rationale 
explains, explicitly or implicitly, why the realization is 
correct from both functionality and performance points of 
view. 

The correctness of the functionality relation between 
the specification and the implementation fragments can be 
validated by theorem proving over the semantics of both.  
This would be an implicit rationale.  Actually carrying out 
the theorem-proving step would constitute “recovering” the 
justification, and can be arbitrarily expensive and therefore 
should be avoided.3  An indirect but explicit validation 
would refer to an already-proven theorem about the 
relationship of an abstraction of the specification fragments 
and of the realization.  Such a theorem implicitly 
constitutes a correctness-preserving program 
transformation, and we can store the program 
transformation in a library to act as the validation [2,3].  
The notion of a transformation as a representation for the 
theorem motivates the use of program transformation 
systems as the automation engine underpinning Design 
Maintenance. 

The validation of the implementation step must verify 
that the functionality is properly preserved and that the 
resulting fragment, ultimately code, achieves the specified 
performance properties.  Performance properties are 
typically emergent from larger components, and are thus 

                                                                 
2 For us, architecture as a term better reflects those design 
decisions that are difficult to change, because much of the 
rest of the system depends on the architectural choices, 
leading to massive revision if changed. 
3 In fact, if we were willing to do this, we would only need 
the specification, and could simply regenerate the code by 
theorem proving methods after every specification change. 

secondary properties, achieved by choosing a realization 
that satisfies the desired performance characteristics.  When 
the choice is made, one is obliged to assert or prove that the 
desired performance is achieved. The assertion or proof 
that it does so can be recorded to avoid later need to re-
prove [2,3].  To the extent practical, performance properties 
can be recorded with the transformation’s definition to 
make evaluation more tractable.  One can als o use goal-
directed performance specification decomposition as a 
record.  

3 Acquiring Designs  

We have outlined a formal design representation 
consisting of specification, realization, and rationale.  Such 
a notion for design enables answering hard questions about 
the resulting software artifact: What does it do? How well 
does it perform? How is it implemented? Why is the 
implementation correct? 

How can we acquire and use such designs to enhance 
productivity?  The “pure” method suggests constructing a 
design from scratch. That is, from a specification find 
realizations that are rational.  A practical method suggests 
these could be constructed for legacy software systems 
using reverse engineering to approximate the original 
design. 

The pure approach can be imp lemented by manual 
engineering, much as present day software is laboriously 
hand-coded.  Candidates for implementing specification 
fragments are enumerated, evaluated, and one is chosen, 
with the rationale for the choice made being encoded at the 
same time.  The pure approach can also be implemented by 
using a program transformation system to select from a 
database of predefined transformations.  In practice, we 
expect a mixed initiative in which transformation engines 
propose and engineers select, or engineers enrich the 
database of transformations with new transformations 
during implementation. 

Having a database of transformations would enable a 
pattern-directed reverse engineering of code for which the 
design does not exist [4].  Transforms matching some 
fragment of the implementation would be proposed from 
the database of existing transformations. Each proposed 
transform implies a proposed specification being 
implemented. The engineer would validate and select from 
among the proposed transforms along with implied 
specifications and this would be recorded. Alternatively, 
the engineer would add new transforms as necessary to 
enrich the database of transforms. 

4 Continuous Design Maintenance 
A simple model of design use would be big-bang 



  

  

 

implementation and design consultation only for 
understanding.  The vision we propose is continuous design 
revision by repeated incremental design cauterization and 
implementation. 

This process occurs in a cyclic fashion.  In the first step, 
an undesired property of the system is identified, either in 
terms of function or performance.  The difference between 
the desired behavior and the actual is encoded as a formal 
maintenance delta.   This delta is used to determine the 
parts of the design that cannot be retained. These parts  are 
removed, leaving a partially implemented design that is 
consistent with the new desired behavior.  Finally, the 
partial design is extended to a complete design and 
implementation.  The theory for maintenance deltas and 
incremental design revisions is provided in [2,3]. 

Productivity is obtained in numerous areas.  
Specification in terms of changes is both natural and 
succinct, and is separated from implementation issues.  
Estimation of the impact of a proposed change can be 
determined by tracing the downstream affect of the change 
in terms of what must be removed.  Summing previous 
engineering costs on similar low-level specifications 
corresponding to the removal points can approximate 
estimated implementation costs.  Actual removal can be 
automated, and implementations can be augmented by 
transformation systems whose power grows incrementally 
over time as engineers add new DSLs or transformations.  
Finally, multiple engineers can operate on the design 
concurrently if design changes are treated as long-running 
transactions. 

5 DMS 1.0 Status  
Design Maintenance is more than just a vision.  

Semantic Designs (the author’s institution) is committed to 
implementing this vision, recognizing that it is a long term 
process requiring additional research in design capture. 

The foundation for this implementation is DMS, a 
scalable, industrial strength program transformation system 
(www.semdesigns.com/Products/DMS/DMSToolkit).  
DMS operates on multiple domains, both low level (C++, 
COBOL, XML) and high level (SPECTRUM algebraic 
specifications [7]).  DMS is designed for large-scale 
applications with millions of lines of code.  DMS is 
implemented in a parallel language, PARLANSE[11] to 
provide as much possible computing power to the problem 
of symbolic analysis and synthesis.   

DMS has been deployed to carry out large-scale 
automated tasks such as duplicate code detection [6], 
translating JOVIAL to C, test coverage analysis and as an 
embedded, re-targetable code generator for industrial 
automation control. 

6 Conclusion 
This white paper has sketched a new model of software 

engineering, based on continuous design maintenance of a 
formal design consisting of specification, realization, and 
rationale [2,3].  Industrial-strength technology for 
implementing foundational components for our notion of 
design has been constructed and fielded.  
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